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A new procedure for the calculation of spatial impulse responses for linear sound fields is
introduced. This calculation procedure uses the well known technique of calculating the spatial
impulse response from the intersection of a circle emanating from the projected spherical wave with
the boundary of the emitting aperture. This general result holds for all aperture boundaries for a flat
transducer surface, and is used in the procedure to yield the response for all types of flat trans-
ducers. An arbitrary apodization function over the aperture can be incorporated through a
simple one-dimensional integration. The case of a soft baffle mounting of the aperture is also
included. Specific solutions for transducer boundaries made from lines are given, so that any
polygon transducer can be handled. Specific solutions for circles are also given. Finally, a solu-
tion for a general boundary is stated, and all these boundary elements can be combined to,
e.g., handle annular arrays or semi-circle transducers. Results from an implementation of the
approach are given and compared to previously developed solutions for a simple aperture, a
complex aperture, and a Gaussian apodized circular transducel99@ Acoustical Society of
America.[S0001-49669)01406-X

PACS numbers: 43.35.Cg, 43.20.p%EB]

INTRODUCTION Spatial impulse responses from bounded and non-
apodized apertures always have discontinuities due to their

The calculation of linear, acoustic fields is most often : e
e halrp edges, which makes it difficult to keep the full energy
based on the spatial impulse response approach as sugges%e

Tuphol ¢ ish&r3 H th | a!’ld spectral content in a sample(_j eva_luation. yarioqs t.etch-
by Tupholme and Stepanishért. Here the pulsed pressure fiques have been applied for coping with the discontinuities

the transducer surface and the spatial impulse response. T' the spatigl impulse response. This ha_s included using very
impulse response has been found for a number of geometriétd sampling frequencies, making a time adapted evalua-
(round flat pistorf, round concavé?® flat rectanglé:” and flat fuon, or using the integrated response. Cc.)mputer.ev:_alluanon
trianglé®). The solutions arrived at are often complicated,'S: thus, always necessary, when evaluating spatial impulse
since it involves the evaluation of the Rayleigh surface inte!€SPONSESs.
gral. The response depends on the relative position of the NS paper therefore suggests a new procedure for cal-
field point and many special cases exist, which makes botﬁ“'lat'ng the spatial |mpulse response in Whlch_ the computer
the derivation of the solution difficult and the evaluation of IS involved at an earller_ stage In_the evaluation o_f the re-
the responses cumbersome. For example, to evaluate the &2ONSes. The response is determined by the crossings of the
sponse from a rectangle, four synthetic rectangles are intr2oundary of the aperture by the spherical wave emitted from
duced, and when evaluating a triangle, three synthetic trithe field point. For flat apertures this observation makes it
angles are introduced to account for the 15 different possibl@0ssible to derive a general approach for calculating the spa-
cases of triangle shape and field point positions. This makel$@l impulse response for any aperture geometry and find the
it necessary to use computers for evaluating and interpretingesponse with no approximation. The paper derives impulse
the responses, since the formulas do not readily give a usefégsponses for apertures described by bounding lines and
perception of the solution. circles and outlines how the response can be evaluated for
It would be appropriate to arrive at general solutions forapertures bounded by any polynomial in the plane’s coordi-
any geometry that would be both easy to derive analyticallyrates &,y). Some of the intersections need not always be
and fast to evaluate with a computer. This has previouslgalculated, and this is used to devise an optimized algorithm
been achieved by dividing the aperture surface into smalleihat only needs to find the minimum number of intersections.
elements like rectanglor trianglest® and then summing It is also shown in Sec. lll how an arbitrary apodization can
the response for the sub-elements. Often the transducer musg introduced through a previously developed simple one-
be divided into many elements and only a piecewise approxidimensional integration, and how the solution also can be
mation to the apodization is obtained. The fitting to the ac-applied to both the soft baffle and rigid baffle situations. A
tual surface is also only approximative for round or ovalnumber of examples from use of the approach are given in
surfaces; even when using a triangular shape. Sec. VII. Among these is a comparison between the tradi-
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Aperture

FIG. 1. Intersection of spherical waves from the field point by the aperture,
when the field point is projected onto the plane of the aperture.

tional solution for a rectangle and the new approach, which
both yield the same response.

I. BASIC THEORY

A short review of the calculation of spatial impulse re-
sponses is given in this section to facilitate the development
of the new calculation procedure.

The spatial impulse response is found from the Rayleigh
integral given by*!!

5(t— |r1;r2|)
h(ry,t)= fs

2m|r 11| ds

oY)

when the apertur& is mounted in an infinite, rigid baffle.
Herer, denotes the position of the field poimt, denotes a
position on the aperture; is the speed of sound, artdis
time. The integral is essentially a statement of Huyghen's
principle that the field is found by summing the radiated
spherical waves from all parts of the aperture. This can also
be reformulated, due to acoustic reciprocity, as finding the

part of the spherical wave emanating from the field point thaFIG. 3. Flow chart for the simple approach for calculating the spatial im-
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while t < d2/c
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intersects the aperture. The task is, thus, to project the fielpHIse response.

point onto the plane coinciding with the aperture, and then

find the intersection of the projected spherical watee

circle) with the active aperture as shown in Fig. 1.
Rewriting the integral into polar coordinates gives:

o=, f

8 e

2

Projected
i spherical
i wave

wherer is the radius of the projected circle amlis the
distance from the field point to the aperture given Ry
=r?+22. Herez, is the field point height above the-y
plane of the aperture. The projected distantegl, are de-
termined by the aperture and are the distance closest to and
furthest away from the aperture, af ,®, are the corre-
sponding angles for a given timeee Fig. 2

Introducing the substitutionR dR=2r dr gives

L S

The variablesR; and R, denote the edges closest to and

rl!t) (3)

FIG. 2. Definition of distances and angles in the aperture plan for evaluatlnéurtheSt away from the field point. Finally using the substi-

the Rayleigh integral.
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tutiont’ =R/c gives
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C (9, [ty lated as finding the angles of the aperture edge’s intersec-
h(ry,t)=5— fo f o(t—t")dt' d@. (4 tions with the projected spherical wave, sorting the angles,
1h and then summing the arc angles that belong to the aperture.

For a given time instance the contribution along the arc isrinding the intersections can be done from the description of

constant and the integral gives the edges of the aperture. A triangle can be described by
0,-0, three lines, a rectangle by four, and the intersections are then
h(r;,t)=—5——-c¢ (5)  found from the intersections of the circle with the lines. This

2 . . .

makes it possible to devise a general procedure for calculat-
when assuming the circle arc is only intersected once by thing spatial impulse responses for any flat, bounded aperture,
aperture. The angleé8, and®, are determined by the inter- since the task is just to find the intersections of the boundary
section of the aperture and the projected spherical wave, anglith the circle.
the spatial impulse response is, thus, solely determined by The spatial impulse response is calculated from the time
these intersections, when no apodization of the aperture ihe aperture first is intersected by a spherical wave to the
used. The response can therefore be evaluated by keepifghe for the intersection furthest away. The intersections are

track of the intersections as a function of time. found for every time instance and the corresponding angles
are sorted. The angles lie in the interval from 0 to. 2 is
II. A NEW CALCULATION PROCEDURE then found whether the arc between two angles belongs to

o o the aperture, and the angle difference is added to the sum, if
From the derivation in the last section it can be seen thafye 4rc segment is inside the aperture. This yields the spatial
the spatial impulse response in general can be expressed ﬁﬁpulse response according to E6). The approach can be
described by the flow chart shown in Fig. 3.
©6) The only part of the algorithm specific to the aperture is
the determination of the intersections and the whether the
point is inside the aperture. Section IV shows how this is
where N(t) is the number of arc segments that crossesione for polygons, Sec. V for circles, and Sec. VI for higher-
the boundary of the aperture for a given time e(hél)(t), order parametric boundaries.
®(1‘)(t) are the associated angles of the arc. This was also All the intersections need not be found for all times.
noted by Stepanishéf.The calculation can, thus, be formu- New intersections are only introduced, when a new edge or

N(t)
(1.0 = 5 3, (09 1-0(1)]
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Field C 07
point h(ry,t)= —f ap,(1,0)dO 9
Xy Yo 2 2m Jo,

as noted by several authdrs® The response for a given
P Projected time point can, thus, be found by integrating the apodization

il ifgveeﬂcc” function along the fixed arc with a radius of \(ct)?— 23
/ for the angles for the active aperture. Any apodization func-
P tion can therefore be incorporated into the calculation by

employing numerical integration.

Often the assumption of an infinite rigid baffle for the
transducer mounting is not appropriate and another form of
the Rayleigh integral must be used. For a soft baffle, in
which the pressure on the baffle surface is zero, the

Rayleigh—Sommerfeld integral is used. ThigRef. 16, pp.
FIG. 5. Definition of angle used for a soft baffle. 46-50

corner of the aperture is met. Between times when two such 5<t— Iraral
corners or edges are encountered the number of intersections h(r,,t)= f R ———
remains constant and only intersections, which belong to s 27—y
points inside the aperture need be found. Note that an aPe&ssuming thajr; —r,|>\. Here cosp is the angle between
ture edge gives rise to a discontinuity in the spatial impuls§nhe jine through the field point orthogonal to the aperture
response. Also testing whether the point is inside the apeisiane and the radius of the spherical wave as shown in Fig.
ture is often superfluous, since this only needs to be found T, anglesy is fixed for a given radius of the projected

once after each discontinuity in the response. These two Okﬁ'pherical wave and thus for a given time. It is given by
servations can significantly reduce the number of calcula-

cose dS, (10

tions, since only the intersections affecting the response are COSo= Z % (11)
found. The flow chart for the optimized approach is shown in "Rt
Fig. 4.

The procedure first finds the number of discontinuities.USIng the _substltutlons from Sec_. | the Rayleigh—
Sommerfeld integral can then be rewritten as

Then only intersection influencing the response are calcu-

lated between two discontinuity points. This can potentially z, 2 3(t—t')
make the approach faster than the traditional approach, Ns(r1,0)=5-c(0;=0) Jt —rdt- (12)
where the response from a number of different rectangles or !
triangles must be calculated. Using the property of thé-function that
+ o0
Ill. APODIZATION AND SOFT BAFFLE f,w g(t)a(t—t")dt’=g(t) (13
Often ultrasound transducers do not vibrate as a pistothen gives
over the aperture. This can be due to the clamping of the
; : ; - : 2,0,-0, z
active surface at its edges, or intentionally to reduce side he(ry,t)= p c= —ph(rl t). (14)
lobes in the field. Applying for example a Gaussian apodiza- ct 2w ct

tion will significantly lower side lobes and generate a field o spatial impulse response can, thus, be found from the

with a more uniform point spread function as a function of g 44| impulse response for the rigid baffle case by multi-
depth. Apodization has previously been found and is 'ntro'plying with z,/(ct).

duced in Eq/(2) by writing™®

(C] d
h(rl,t)=f®Zfdzap(r,ﬁ))ﬁrdrd@ @)

in whicha(r,0) is the apodization over the aperture. Using
the same substitutions as before yields

h(ry,0=— F)zftz (t',0)8(t—t")dt' dO,  (8)
r ) = a ] - l

1 27T @1 ty pl
wherea,(t',0)=a,(+/(ct')?—22,0). The inner integral is
a convolution of the apOd'Zanon function with&function FIG. 6. Definition of bounding lines for polygon transducer. The arrows

and readily yields indicates the half-planes for the active aperture.
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IV. SOLUTION FOR POLYGONS R ———
The boundary of any polygon can be defined by a set of a’+1 ,
bounding lines as shown in Fig. 6. The active aperture isthen  y— 4y 1y | (19
defined as lying on one side of the line as indicated by the _ - _ )

arrows, and a point on the aperture must be placed correctlynere &p,yp,2p) is the position of the field point. For an
in relation to all lines. The test whether a point is on theinfinite slope line the solution is=x, andy=y, . The cor-
aperture is thus to go through all lines and test whether thgsponding time is:

point lies in the active half space for the line, and stop if it is JX=x) 2+ (y—y,) 2+ 22
not. The point is inside the aperture, if it passes the test for t;= P i N (20
all the lines. ¢

The intersections are found from the individual intersec- . . .
The intersections of the lines are also found, and the corre-

tions between the projected circle and the lines. They areponding times are calculated by B80) and sorted in as-

determined from .the equations for the projected Spherlcazending order. They indicate the start and end time for the
wave and the line:

response and the time points for discontinuities in the re-
r2=(x—x%o)?+(y—yo)?% sponse.

y=ax+y,, (15)
V. SOLUTION FOR CIRCULAR SURFACES

2_ 2_ 2 .
re=(ct) -z, The other basic shape for a transducer apart from rect-

Here (Xo,Yo) is the center of the circleg the slope of the @ngular shapes is the flat, round surface used for single ele-

line, andy its intersect with thg-axis. The intersections are Ment piston transducers and annular arrays. For these the
given from the solutions to: intersections are determined by two circles as depicted in

Fig. 7. HereO, is the center of the aperture with radiug
0=(1+a®)x?+ (2ay;— 2Xo— 2Yyoa)X

Field point outside the aperture

+(y5+yi+Xx5—2yey1—r1?)

Projected
2 spherical
=AXx“+Bx+C, Active aperture wave
D=B?-4AC. (18
The angles are
@:arctar€ i_io) . a7
O ((C t)Z_ZPZ)V/Z
Intersections between the line and the circle are only found i '

D>0. A determinantD <0 indicates that the circle did not
intersect the line. If the line has infinite slope, the solution is
found from the equation:

Active aperture
X=X 1

(18 Projected
spherical
. wave

0=y2—2yoy+ Y5+ (X1~ Xg)>—r2

=A.y?>+B,y+C.,

in which A,,, B,, C, replacesA, B, C, respectively,
and the solutions are found fgrrather tharx. Herex, is the
line’s intersection with the-axis.

The times for discontinuities in the spatial impulse re-
sponse are given by the intersections of the lines that defin
the aperture’s edges and by the minimum distance from th
projected field point to the lines. The minimum distance is
found from a line passing through the field point that is Or-FIG. 7. Geometry for determining intersections between circles. The top

thogonal to _the bounding Ilne._The_ mt_ersectlon between th?;raph shows the geometry when the field point denote@® pis outside the
orthogonal line and the bounding line is: aperture, and the bottom graph when it is inside.

Field point inside the aperture
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Hesponse trom rectanguiar caiculauon

Time [s]

Response from using lines

A a0
08
5 06

Time [s]

and the projected spherical wave is centere@atwith ra-

diusr,(t)= \/(ct)z—zzp. The lengthh,(t) is given by (Ref.
17, p. 66

2p(t)(p(H) —a)(p(t) —ra) (p(t) —rp(t))

ha(t)z a
a=[0,-0,,

a+r,+rpt
= 2150,

(21)

In a coordinate system centered@{ and anx-axis in the
0,— 0, direction, the intersections are at
y: ha(t)y

I =+ \ri(t)—hi(t).

(22

The sign forl depends on the position of the intersections. A

Lateral distance [mm]

FIG. 8. Spatial impulse response calculated from a rect-
angular transducer ofX45 mm. The top graph shows
the result from using traditional evaluation and the bot-
tom graph is when using the new method with four
bounding lines. The axial distance to the field point is
10 mm and the response is calculated for lateral dis-
tances from 0 to 21 mm off-axis in steps of 1 mm.

Laterat distance [mm)

When the field point is outside the active aperture the
spatial impulse response is

|0,— 0, c ha(t)
h(rl,t)—TC—;arcta I—,
h,(t 23
®2=arcta76 al() =—0,. @3

It must be noted that a proper four-quadrant arctan should be
used to give the correct response. An alternative formula is
(Ref. 18, p. 19

c
h(rl,t)zﬁarcsin

« ( 2yp(t)(p(t) —a)(p(t) —ra) (P(t) —rp(t))

rs(t)
_c _[ahg(t)
—Earc& I’tz)(t) .

(24

negative sign is used if the intersections are for negative

values ofx, and positive sign is used for positixgositions.
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The start timetg for the response is found from
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y [mm]
=)

X [mm)

thereafter the arc lying outside the aperture should be sub-
tracted, so that

h _ 27— [0,— 0] 28
()=——"p-—c. (29
The response ends when
p()=ra+[0,— 0y,
(29)

V([01= 0y +r2)2+2;
to= C .

The determination of which part of the arc that subtracts or
adds to the response is determined by what the active aper-
ture is. One ring in an annular array can be defined as con-
sisting of an active aperture outside a circle combined with
an active aperture inside a circle for defining the inner and
outer rim of the aperture. A circular aperture can also be
combined with a line for defining the active area of a split
aperture used for continuous wave probing.

FIG. 9. Bounding lines defining a complex aperture. The arrows indicates\/I SOLUTION FOR PARAMETRIC SURFACES

the half-plane for the active aperture.

ratrp(t)=[0;—0,,

(29)
V(042 V([01- 0 —ra)*+7
s c c ’
and the response ends at the titpavhen
o()=ra+[01— 0Ol
(26)

Vit +25 (01— 0, +12)2+2,
te= c = c .

When the field point is inside the aperture, the response is

z (r,— 0= 0,2+ 22
h(ry,t)=c forfsts‘/ a |l 1C Al >,

(27)

Response from using lines

1600
1400
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Time (s}
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For ellipses or other higher-order parametric surfaces it
is in general not easy to find analytic solutions for the spatial
impulse response. The procedure described can, however,
devise a simple solution to the problem, since the intersec-
tions between the projected spherical wave and the edge of
the aperture uniquely determine the spatial impulse response.
It is therefore possible to use root finding for a set(wdn-
linean equations for finding these intersections. The problem
is to find when both the spherical wave and the aperture have
crossing contours in the plane of the aperture, i.e., when

(et)?=2Z5—(x—xp) 2= (y—Yp)?=0,
S(x,y)=0,

in which S(x,y)=0 defines the boundary of the aperture.
The problem of numerically finding these roots is in general
not easy, if a good initial guess on the position of the inter-

(30

FIG. 10. Spatial impulse response
from the complex aperture defined in
Fig. 9. The axial distance to the field
point is 10 mm and the response is cal-
culated for lateral distances from 0 to
21 mm off-axis in thex-direction.

Lateral distance [mm]
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FIG. 11. Spatial impulse response

038 0s 20 Lateral distance [mm] from a circular aperture calculated
x107° with the new method. Graphs are
Time [s] shown without apodization of the ap-
erture (top) and with a Gaussian
Response from circular, Gaussian apodized transducer apodization functiorfbottom. The ra-

dius of the aperture is 5 mm and the
field is calculated 10 mm from the
transducer surface.

0.8 20 Lateral distance [mm]

Time [s]

sections is not foundRef. 19, pp. 286—289 Good initial  center of the rectangle and out in steps of 1 mm in the
values are, however, found here, since the intersections mustdirection to 21 mm away from the center of the rectangle.
lie on the projected circle and the intersections only moveThe results are shown in Fig. 8. It is seen that the two meth-
slightly from time point to time point. An efficient Newton— s give identical results.

Raphson algorithm can therefore be devised for finding the  The second example is for a more complicated aperture,
intersections, and the procedure detailed here can be made iqre its bounding lines are shown in Fig. 9. The calculated

find the spatial impulse response for any flat transducer ges'patial impulse response is shown in Fig. 10. Responses have
ometry with an arbitrary apodization and both hard and SOfbeen calculated from the center position for0 mm, y

batffle mounting. =0 mm to the positiorx=14 mm, y=0 mm in increments
VIl. EXAMPLES of 1 mm. The distance to the transducer surface was always

The first example shows a comparison between the tral0 MM(=2). A complicated response with a number of dis-
ditional method for calculating spatial impulse responses angontinuities is seen due to the many edges of the aperture.
the new method. The response froma%mm rectangle is The last example shows the response from a circular, flat
found for different spatial positions 10 mm from the front transducer calculated with the new method. Two different
face of the transducer. The responses are found from theases are shown in Fig. 11. The top graph shows the tradi-
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