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Medical ultrasound imaging can be simulated realistically using linear acoustics. One of the most
powerful approaches is to employ spatial impulse responses. Hereby both emitted fields and pulse-
echo responses from point scatterers can be determined. Also any kind of dynamic focusing and
apodization can be incorporated, as has been done in the Field II simulation program. Here the
transducer is modeled through a set of either rectangles, triangles, or bounding lines, so that any
geometry can be simulated. The response from the transducer is found by summing the spatial
impulse responses from the individual elements. One of the problems in using spatial impulse
responses is the abrupt changes in the responses due to the sharp transducer boundaries. Sampling
the responses directly therefore have to be done at very high sampling frequencies to keep the shape
and energy of the response. The high sampling frequency is unnecessary in the final signals, since
the transducers used in medical ultrasound are band limited. Approaches to reduce the sampling
frequency are, thus, needed to make efficient simulation programs. Field II uses time integration
of the spatial impulse responses using a continuous rather than discrete time axis. This preserves
the energy in the responses and makes it possible to make sub-sample interval delays for focusing.
The paper discusses the consequence of the integration for the rectangular elements that uses an
approximative calculation of the spatial impulse responses. Data for the accuracy as a function of
sampling frequency is given, and it is shown how a sampling frequency of 100 MHz gives similar
results to using 2 GHz sampling of the analytic solution for rectangular elements. The spatial
impulse responses for the triangular and bounding line elements are found analytically, and an
iterative integration routine has to be used. The Romberg integration routine is used, and the
accuracy versus sampling frequency for bounding line is shown. An increased accuracy is attained
for the lines compared to the rectangles, but the simulation times are significantly higher. Line
elements should therefore, in this implementation, only be used very close to the transducer, and
if a very high precision is needed in the calculation.

1. Introduction

The optimization and development of medical ultrasound systems is increasingly based
on simulating the whole system. This includes the focusing and apodization during trans-
mission of the ultrasound pulse and the dynamic receive processing performed on the multi
channel data from the array transducer. Different apodization and delay profiles are em-
ployed and the design of these can be complicated. It is therefore advantageous to simulate
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2 Speed-accuracy trade-offs in simulating medical ultrasound imaging

the system for both point targets and for whole phantom objects with cysts and high scat-
tering regions to evaluate both the resolution and contrast of the system.

The most frequently used approach is based on the spatial impulse response method
originally developed by Tupholme1 and Stepanishen2, 3 and briefly described in Section 3.
In this method the impulse response of the system is calculated for a point in space for a
homogeneous medium, and hereby both the emitted and received signal for the pulsed and
continuous wave case can be derived. The method relies on linear acoustics as described
in Section 2, and it can handle any kind of apodization, focusing, and excitation of the
transducer making it ideally suited for basic simulation of ultrasound systems.

There is, however, a number difficulties when using spatial impulse responses for sim-
ulation. The responses have dicontinuities due to the finite extend of the transducer as
described in Section 4. The response will have a discontinuity, when the spherical wave
from the aperture cross one of the transducer boundaries. The responses are, thus, often
very broad band. Ideally the simulation should be fast and this entails using a low sampling
frequency. This is in contradiction to the very broad band spatial impulse responses. The
simulation should also be accurate, and this is often in contradiction to using a low sampling
frequency.

The approach taken in this paper is to use the time integrated spatial impulse response,
which preserves all the energy in the responses. Although the responses are broad band
only the lower frequency part is used in actual simulations, since the transducer is band-
limited. The higher part of the spectrum is, thus, filtered out and it is only important
to accurately model the lower frequency part. This can be done by time integrating the
response. The approach, used in the Field II program mentioned in Section 5, is described
for both rectangular elements that uses a far-field approximation and for triangular and
bounding line elements. Finally, the accuracy and simulation times for the time integration
method is described in Section 6.

2. Linear Acoustic System

Any linear system is fully characterized by its impulse response. From this the output
signal to any input excitation can be determined and the transfer function is found by
Fourier transforming the impulse response. These features has been used extensively in
electrical engineering in design of filters and other circuits. The powerful concept can also
be employed in linear acoustics for characterizing and optimizing acoustic systems. Here
the situation is depicted in Fig. 1. An acoustic radiator is mounted in an infinite, rigid baffle
and radiates into a homogeneous, non-refracting medium. The emitted pressure at a point
in space is then measured with a needle hydrophone. Applying a delta function excitation
on the transducer then yields the acoustical impulse response of the system. Moving the
hydrophone to a new point will yield another impulse response, and it is therefore an impulse
response dependent on the spatial position relative to the aperture that is measured.

Formally the emitted ultrasound pressure field p(~r1, t) can be described by

p(~r1, t) = ρ0
∂v(t)
∂t

∗ h(~r1, t), (2.1)
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Fig. 1. Impulse response at a point in space.

where ρ0 is the density of the medium, v(t) the surface velocity of the aperture, ∗ denotes
convolution and h(~r1, t) is the spatial impulse response of the system at location ~r1. A
formal derivation of this equation can be found in the next section.

The spatial impulse response can also be used to characterize the pulse echo signal
received from a small point scatterer. The received voltage signal vr(~r1, t) is given by4:

vr(~r1, t) = vpe(t) ∗ fm(~r1) ∗ ∂2hpe(~r1, t)
∂t2

(2.2)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c
(2.3)

hpe(~r1, t) = he(~r1, t) ∗ hr(~r1, t)

where he(~r1, t) is the spatial impulse response for the emitter, hr(~r1, t) for the receiver, and
vpe(t) is the electro-mechanical response of the transducer in both transmit and receive.
The scattered signal arises from the perturbations in density ∆ρ(~r1) and speed of sound
∆c(~r1).

Obtaining the continuous wave fields for both the emitted and pulse echo case is straight
forward since Fourier transform of the spatial impulse response gives the continuous wave
response. All fields relevant in medical ultrasound can, thus, be calculated from the spatial
impulse response.

3. Derivation of spatial impulse response

This section will give a brief derivation of the spatial impulse response in order to explain
the properties and difficulties of spatial impulse response. The spatial impulse response is
formally defined by

h(~r1, t) =
∫

S

δ(t− |~r1−~r2|
c )

2π | ~r1 − ~r2 |dS (3.4)

where | ~r1 − ~r2 | is the distance to field point, c is the speed of sound, and S denotes the
active surface of the transducer. This can be seen as a statement of Huygens’ principle in
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which each point on the radiating surface emits a spherical wave. The field is then found by
integrating all the spherical waves for a given time and spatial position in order to obtain
the emitted pressure for one time instance and position. The situation is illustrated in
Fig. 2, where the radiated spherical waves are plotted as a function of space for one given
time instance. The higher amplitude spatial impulse response in front of the transducer
compared to the sides is easily seen.

| r |

z

x

t =
|r |
c

Baffle

Transducer

Fig. 2. Radiation of spherical waves from an aperture for a fixed time instance.

Figure 2 gives a general overview of the spatial extend of the field for a given time
instance, but the responses should be evaluated for one given position as a function of time.
This can be done by interchanging emitted and receiver using acoustic reciprocity, which
says that ”If in an unchanging environment the locations of a small source and a small
receiver are interchanged, the received signal will remain the same”5. This is illustrated in
Fig. 3 in which a spherical wave is emitted from the small point receiver. The spherical
waves projected onto the flat plane of the aperture denoted by the gray triangular area
results in circles with an origo at the field point and a radius dependent on the time as
shown in Fig. 4. The spatial impulse response for a given time is then determined by
which part of the circle that intersects the active aperture. This can be derived using (3.4)
Rewriting into polar coordinates using

∫ ∫

s
f(x, y)dxdy =

∫ r

0

∫ 2π

0
rf(r, θ)dθdr. (3.5)

gives

h(~r1, t) =
∫ r

0

∫ 2π

0
r
δ(t− |R|

c )
2π|R| dθdr. (3.6)
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Fig. 3. Emission of spherical wave from the field point and its intersection of the aperture.
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Fig. 4. Intersection of spherical waves from the field point by the aperture, when the field point is projected
onto the plane of the aperture.
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The projected circles have a radius r =
√

(ct)2 − z2. The distance to the field point is
R =

√
z2 + r2, where z is the field point’s height above the x− y projection plane.

An example of the geometric situation for a triangular aperture is shown in Fig. 5. The
field point is at one of the corner points, and the dashed line indicates the projected spherical
wave for a given time instance.

Field point

x

y

Spherical
wave

θb

θc

r

Fig. 5. Geometry for evaluating the spatial impulse response from a triangular aperture, when the field
point is at one of the corner points. The dashed line indicates the projected spherical wave for a given time
instance.

The first spherical wave arrives at the aperture at time t = t1 = z/c. Hereafter the fixed
part of the circle between the angles θb and θc contributes to the response, and the response
is:

hT (~r1, t) =
∫ r

0

∫ θc

θb

r
δ(t− |R|

c )
2π|R| dθdr =

θc − θb

2π

∫ r

0
r
δ(t− |R|

c )
|R| dr (3.7)

Substituting 2RdR = 2rdr gives:

hT (~r1, t) =
θc − θb

2π

∫ √
z2+r2

z
δ(t− |R|

c
)dR (3.8)

A final time substitution of R/c = t′ results in

hT (~r1, t) =
θc − θb

2π
c

∫ tx

t1
δ(t− t′)dt′ =

(θc − θb)
2π

c for t1 ≤ t ≤ tx. (3.9)

Time tx equals the corresponding time for the point closest to origo and gives the starting
point for the impulse response. t1 is the time for the projected circle reaching the far edge of
the triangle, and the response then drops off due to the smaller part of the arc intersecting
the active aperture. This derivation shows, that it is the part of the arc on the aperture,
that determines the magnitude of the spatial impulse response. Also the response is always
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positive. The discontinuities in the response is due to the crossing of a boundary of the
aperture by the projected wave.

A simple examples of a spatial impulse response is seen in Fig. 6. The response starts

x

y

h

t

Aperture

Spherical waves

Fig. 6. Spatial impulse response from a rectangular aperture when the field point is inside the aperture.

out with a value of c after the arrival of the first spherical wave at time t = z/c. It then
drops of after crossing the first edge and the drops further, when reaching the next edges.
It finally attains a value of zero, when the projected spherical waves are beyond the edges
of the aperture.

An other example of spatial impulse responses is shown from a triangular in Fig. 7. The
different discontinuities and variations in the responses are seen.
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Fig. 7. Spatial impulse response from a triangular aperture for different field point positions.
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4. Problems with spatial impulse responses

There is a number of difficulties, when using spatial impulse responses in simulating
ultrasound systems. Primarily they are difficult to calculate analytically, and equations
for some commonly used transducer geometries have not been derived. This includes the
elevation focused linear element and convex array transducers. Secondly, the responses are
numerically difficult to handle, since they have discontinuities due to the aperture elements
edges. The discontinuities generate very high frequencies in the short responses from small
array transducer elements, and these are difficult to handle in a sampled simulation program.
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Fig. 8. Spatial impulse response from small array element.

The problems are illustrated in Fig. 8, which shows the impulse response from a small
array element. The response is of very short duration and has sharp discontinuities. Such
an element can be used in, e.g., a 3 MHz array transducer and a natural choice of simulation
sampling frequency would be 20 MHz. This would, however, not be sufficient for the high
frequencies in the response. This is illustrated in Fig. 9, where the analytic solution for
a concave transducer was evaluated using a 100 MHz and a 2 GHz sampling frequency.
The 100 MHz calculation distorts the response severely at the center, because the spatial
impulse response here approaches a delta-function.

The solution to these problems is to divide the aperture into small elementary elements
and carefully keep track of the energy of the elementary responses. Hereby any geometry
transducer can be modeled as a set of elementary elements and their responses superimposed
due to linearity. It should also be noted that although the spatial impulse responses are
very wide bandwidth only a small part of this bandwidth is often used, since the electro-
mechanical bandwidth of the transducer is limited. It is therefore important to keep track
of all the energy in the responses and not so important to model exactly every change in the
small responses, since this only has an effect at high frequencies. Ensuring that all energy
is kept is here done by integrating the calculated responses on a continuous time axis and
then calculate the spatial impulse response at the discrete points by taking the difference
from sample point to sample point. Examples of the efficiency of this approach is shown
later.

The advantages of subdizing into mathematical elements is that all transducer geome-
tries can be handled. The phasing and thereby time delay applied on each element of the
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Fig. 9. Pulse-echo field from concave transducer at the focal point calculated with a sampling frequency of
100 MHz (top) and 2 GHz (bottom).

transducer is easily handled and the apodization, i.e. that v(t) varies over the transducer
surface, can also be incorporated through a simple scaling of the individual element re-
sponses. Using spatial impulse responses also ensures that all kinds of excitations of the
aperture can be handled.

5. Field II simulation program

The division of the aperture into small mathematical elements is the method used by
the Field II program. Three different types of elements are used as shown in Fig. 10.
For the rectangle elements a far-field calculation of the spatial impulse response is used

Fig. 10. Basic mathematical elements used for modeling the transducer aperture in Field II.

as shown in Fig. 11. The response is very fast to calculate6 and it can be analytically
integrated for giving a continuous time axis and preserving the energy in the responses.
The drawback is the large number of rectangles needed when the field point is close to the
aperture and when the aperture is round or oval. This can be overcome by the triangular
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t1 t2 t3 t4

t

h
m/s

Fig. 11. Far-field response from rectangle.

element in which the full solution is used7. A Romberg integration routine8 is then used for
integrating the response. The triangular element gives a better fit to complex apertures,
and the calculated responses has the highest precision attainable for the give sampling
frequency, when using this approach. The solution is, however, much slower than the far-
field rectangular solution. The last mathematical element is constructed from bounding
lines in the plane of the transducer. Hereby any shape element can be described exactly
as long as it has straight edges. The method gives a very simple solution for finding the
spatial impulse response9 and the Romberg method is again used for finding the integrated
response.

The basic structure of the Field II program is shown in Fig. 12. The Matlab program

M-files

Matlab

Matlab
interface

Transducers

Calculations

Signal
processing

Fig. 12. Basic structure of the Field II program.

(MathWorks Inc., Massachusetts, USA) is used for interfacing with the user. This makes
it possible to make scripts for performing ultrasound imaging using both for-loops and
conditional statements along with all forms of signal processing and array manipulations.
The actual calculations are done in the C program associated with the Matlab code through
mex files. Only the parameters for the simulation and the resulting signals are passed
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through the Matlab code thereby making the simulation both fast and memory efficient.
The basic features of the program is:

• Transducer modeled by dividing it into rectangles, triangles and bounding lines.

• C program interfaced to Matlab.

• Matlab used as front-end.

• Can handle any transducer geometry.

• Physical understanding of transducer.

• Pre-defined types: piston and concave single element, linear array, phased array, con-
vex array, 2D matrix array.

• Any focusing, apodization, and excitation pulse.

• Multiple focusing and apodization.

• Dynamic focusing.

• Can calculate all types of fields (emitted, received, pulsed, CW)

• Can generate artificial ultrasound images (phased and linear array images with mul-
tiple receive and transmit foci).

• Data storage not necessary.

• Post-processing in Matlab 5.

• Versions for: Windows(Win 95, 98 & NT), Linux, HP, SUN, SGI, DEC Station (AL-
PHA).

• Executable code is public at: http://www.it.dtu.dk/∼jaj/field/

6. Accuracy of integrated response

The attainable accuracy of the integrated spatial impulse response approach can be
seen in Fig. 13. This show the point spread function calculated at two different sampling
frequencies for a 64 element linear array. The top shows the response for a sampling
frequency of 100 MHz and the bottom for 2 GHz. There is 6 dB between contours and the
functions are essentially similar down to a level of -48 dB and the only difference is that
the top response is 20 times fast to calculate than the bottom response.

The same general picture is seen, when comparing a measured and a simulated response
as shown in Fig. 14. A concave transducer focused at 100 mm with a diameter of 8 mm
was used. A small needle was moved in front of the transducer and the scattered voltage
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Fig. 13. Point spread function for 64 element linear array for fs = 100 MHz (top) and fs = 2 GHz (bottom)
(6 dB between the contour lines).
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Fig. 14. Point spread function for concave, focused transducer top: simulation, bottom: tank measurement
(6 dB between the contour lines).
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signal was recorded as a function of lateral needle position. The slight differences between
the graphs can be attributed to noise and measurement inaccuracies.

A quantitative analysis of the simulation errors has been performed. The simulation
error is calculated by

err =

√√√√√√√√√√

N−1∑

n=0

(rc(n)− rt(n))2

N−1∑

n=0

r2
t (n)

(6.10)

where rt(n) is the reference response calculated at a high sampling frequency and rc(n) is
the response to be error evaluated. All error simulations are performed for a 32-element
linear-array transducer (element width 0.15 mm, kerf 0.05 mm, height 10 mm, focus 60 mm
from aperture). A pulse-echo simulation using 2000 random scatterers placed in box of 10
by 5 by 5 mm 30 mm from aperture was used.

The result, when using the different mathematical elements, is shown in Fig. 15. It is
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Fig. 15. Accuracy of pulse-echo response for rectangular and bounding lines elements as a function of
sampling frequency.

seen that a higher sampling frequency gives a better precision for both the far-field rectangle
solution and the bounding line solution. The bounding line solution is better at attaining
a high precision at low sampling frequencies due to the exact solution employed and the
more advanced integration routine. A factor of roughly 2.5 improvement is seen. The 20 %
error for the rectangles might seem high, but it should be remembered that RF signals are
compared. An even slight change in the phasing of the response can lead to a very high
error. This is especially true at low sampling frequencies. Comparing only the envelope
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Fig. 16. Accuracy of envelope pulse-echo response for rectangular elements as a function of sampling fre-
quency.

of the responses as in Fig. 16 gives a more favorable error. Here the error is reduced by a
factor of 2 - 3 compared to the RF response. The envelope is usually also what is presented
in ultrasound images.

The relation between number of rectangles, accuracy, and simulation time can be seen
in Fig. 17. The top graph show the accuracy as a function of the number of rectangular
elements compared to the ideal response. It is seen that the accuracy increases as a function
of elements and attains a value of roughly 1 %, when using 400 mathematical elements for
each physical element. The simulation time per scatterer for both bounding lines and
triangles with no subdivision are also shown for comparison in the lower graph. They are a
lot slower to evaluate due to the exact solution used and the integration of the responses.
But for high precision simulation it can be an advantage to use them, since the storage used
for the transducer description is much smaller.
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